FIN 620 Emp. Methods in Finance

Lecture 6 – Natural Experiment [P1]

Professor Todd Gormley

Announcements

- If interested in optional exercises, material in Exercise #3 covers today's stuff but also a bit of IV material
- Rough draft of proposal due after next class (at noon)

Should upload to CanvasI'll try to give feedback by next week

Background readings

Roberts and Whited
Sections 2.2, 4

Angrist and Pischke
 Section 5.2

Outline for Today

- Quick review of IV regressions
- Discuss natural experiments
 - How do they help?
 - □ What assumptions are needed?
 - □ What are their weaknesses?
- Student presentations of "IV" papers

Quick Review [Part 1]

- Two necessary conditions for an IV
 - Relevance condition IV explains problematic regressor after conditioning on other x's
 - Exclusion restriction IV does not explain y after conditioning on other x's
- We can only test relevance condition

Quick Review [Part 2]

- Angrist (1990) used randomness of
 Vietnam draft to study effect of military service on Veterans' earnings
 - Person's draft number (which was random) predicted likelihood of serving in Vietnam
 - He found, using draft # as IV, that serving in military reduced future earnings
 - **Question:** What might be a concern about the <u>external</u> validity of his findings, and why?

Quick Review [Part 3]

- Answer = IV only identifies effect of serving on those that served <u>because</u> of being drafted
 - E.g., his finding doesn't necessarily tell us what the effect of serving is for people that would serve *regardless* of whether they are drafted or not
 - Must keep this local average treatment effect (LATE) in mind when interpreting IV

Quick Review [Part 4]

Question: Are more instruments necessarily a good thing? If not, why not?

 $\Box Answer = \dots$

Quick Review [Part 5]

- Question: How can overidentification tests be used to prove the IVs are valid?
 - Answer = Trick question! They cannot be used in such a way. They rely on the assumption that at least one IV is good. You must provide a convincing economic argument as to why your IVs make sense!

Natural Experiments – Outline

- Motivation and definition
- Understanding treatment effects
- Two types of simple differences
- Difference-in-differences

Recall... CMI assumption is key

 A violation of conditional mean independence (CMI), such that E(u|x)≠E(u) precludes our ability to make causal inferences

$$y = \beta_0 + \beta_1 x + u$$

□ $Cov(x,u) \neq 0$ implies CMI is violated

CMI violation implies non-randomness

- Another way to think about violation is that it indicates that our x is non-random
 - I.e., the distribution of x (or the distribution of x after controlling for other observable covariates) isn't random
 - E.g., firms with high x might have higher y
 (beyond just the effect of x on y) because high x
 is more likely for firms with some omitted
 variable contained in u...

Randomized experiments are great...

- In many of the "hard" sciences, the researcher can simply design experiment to achieve the necessary randomness
 - Ex. #1 To determine effect of new drug, you randomly give it to certain patients
 - Ex. #2 To determine effect of certain gene, you modify it in a random sample of mice

But we simply can't do them \mathfrak{S}

- We can't do this in corporate finance!
 - E.g., we can't randomly assign a firm's leverage to determine its effect on investment
 - And we can't randomly assign CEOs' # of options to determine their effect on risk-taking
- Therefore, we need to rely on what we call "Natural experiments"

Defining a Natural Experiment

- Natural experiment is basically when some event causes a random assignment of (or change in) a variable of interest, x
 - Ex. #1 Some weather event increases leverage for a random subset of firms
 - Ex. #2 Some change in regulation reduces usage of options at a random subset of firms

Nat. Experiments Provide Randomness

We can use such "natural" experiments to ensure that randomness (i.e., CMI) holds and make causal inferences!

 E.g., we use the randomness introduced into x by the natural experiment to uncover the causal effect of x on y

NEs can be used in many ways

- Technically, natural experiments can be used in many ways
 - □ Use them to construct IV
 - E.g., gender of first child being a boy used in Bennedsen, et al. (2007) is an example NE
 - □ Use them to construct regression discontinuity
 - E.g., cutoff for securitizing loans at credit score of
 620 used in Keys, et al. (2010) is a NE

And the Difference-in-Differences...

- But admittedly, when most people refer to natural experiment, they are talking about a difference-in-differences (DiD) estimator
 - Basically, compares outcome y for a "treated" group to outcome y for "untreated" group where treatment is randomly assigned by the natural experiment
 - □ This is how I'll use NE in this class

Natural Experiments – Outline

- Motivation and definition
- Understanding treatment effects
 - Notation and definitions
 - Selection bias and why randomization matters
 - Regression for treatment effects
- Two types of simple differences
- Difference-in-differences

Treatment Effects

 Before getting into natural experiments in context of difference-in-differences, it is first helpful to describe "treatment effects"

Notation and Framework

- Let *d* equal a treatment indicator from the experiment we will study
 - d = 0 → untreated by experiment (*i.e., control group*)
 d = 1 → treated by experiment (*i.e., treated group*)
- Let *y* be the potential outcome of interest
 - □ y = y(0) for untreated group
 - \bigcirc *y* = *y*(1) for treated group

• Easy to show that y = y(0) + d[y(1) - y(0)]

Example treatments in corp. fin...

- Ex. #1 Treatment might be that your firm's state passed anti-takeover law
 d = 1 for firms incorporated in those states
 y could be several things, e.g., ROA
- Ex. #2 Treatment is that your firm discovers workers exposed to carcinogen
 d = 1 if have exposed workers
 y could be several things, like M&A

Average Treatment Effect (ATE)

- Can now define some useful things
 - Average Treatment Effect (ATE) is given by E[y(1) - y(0)]
 - What does this mean in words?
 - Answer: The expected change in *y* from being treated by the experiment; <u>this is the causal effect</u> we are typically interested in uncovering!

But ATE is <u>unobservable</u>

$\mathbf{E}[y(1)-y(0)]$

- Why can't we directly observe ATE?
 - □ **Answer** = We only observe one outcome...
 - If treated, we observe y(1); if untreated, we observe y(0). We never observe both.
 - E.g., we cannot observe the counterfactual of what your *y* would have been <u>absent</u> treatment

Defining ATT

- Average Treatment Effect if Treated (ATT) is given by E[y(1) y(0) | d = 1]
 - This is the effect of treatment on those that are treated;
 i.e., change in *y* we'd expect to find in treated random sample from a population of observations that are treated
 - What don't we observe here?
 - **Answer** = y(0) | d = 1

Defining ATU

- Average Treatment Effect if Untreated (ATU) is given by E[y(1) y(0) | d = 0]
 - This is what the effect of treatment would have been on those that are not treated by the experiment
 - We don't observe $y(1) \mid d = 0$

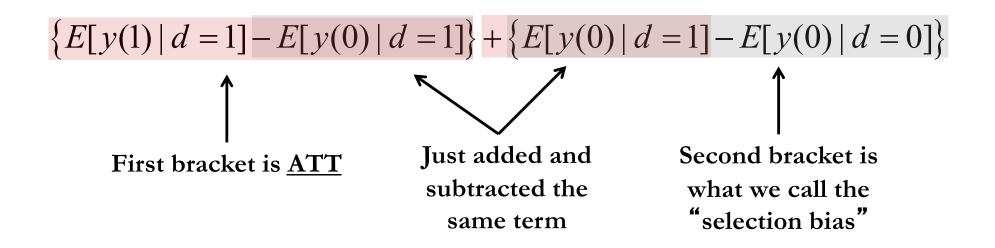
Uncovering ATE [Part 1]

- How do we estimate ATE, E[y(1) y(0)]?
 - Answer = We instead rely on E[y(1) | d=1] E[(y(0) | d=0] as our way to *infer* the ATE

In words, what are we doing & what are we assuming?

Uncovering ATE [Part 2]

- In words, we compare average y of treated to average y of untreated observations
 - If we interpret this as the ATE, we are <u>assuming</u> that absent the treatment, the treated group would, on average, have had same outcome *y* as the untreated group
 - We can show this formally by simply working out $E[y(1) | d=1] - E[y(0) | d=0] \dots$



- Simple comparison doesn't give us the ATE!
 In fact, the comparison is rather meaningless!
- What is the **"selection bias"** in words?

Natural Experiments – Outline

- Motivation and definition
- Understanding treatment effects
 - Notation and definitions
 - Selection bias and why randomization matters
 - Regression for treatment effects
- Two types of simple differences
- Difference-in-differences

Selection bias defined

- Selection bias: E[y(0) | d = 1] E[y(0) | d = 0]
 - Definition = What the difference in average y would have been for treated and untreated observations <u>absent</u> any treatment
 - We do not observe this counterfactual!
- Now let's see why randomness is key!

Introducing random treatment

• A random treatment, *d*, implies that *d* is independent of potential outcomes; i.e.,

 $E[y(0) | d = 1] = E[y(0) | d = 0] = E[y(0)] \longleftarrow$ expected value and E[y(1) | d = 1] = E[y(1) | d = 0] = E[y(1)]In words, the expected value of y is the same for treated and untreated absent treatment

With this, easy to see that selection bias = 0
And remaining ATT is equal to ATE!

Random treatment makes life easy

- I.e., with random assignment of treatment, our simple comparison gives us the ATE!
 - □ This is why we like randomness!
 - But, absent randomness, we must worry that any observed difference is driven by selection bias

Natural Experiments – Outline

- Motivation and definition
- Understanding treatment effects
 - Notation and definitions
 - Selection bias and why randomization matters
 - Regression for treatment effects
- Two types of simple differences
- Difference-in-differences

ATE in Regression Format [Part 1]

Can re-express everything in regression format

$$y = \beta_0 + \beta_1 d + u$$

$$\beta_0 = E[y(0)]$$

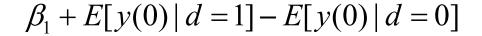
where $\beta_1 = y(1) - y(0)$
 $u = y(0) - E[y(0)]$
This regression will only give
consistent estimate of β_1 if
 $cov(d, u) = 0$; i.e., treatment,
 d , is random, and hence,
uncorrelated with $y(0)$!

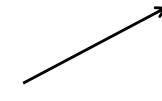
□ If you plug-in, it will get you back to what the true model, y = y(0) + d[y(1) - y(0)]

ATE in Regression Format [Part 2]

• We are interested in
$$E[y | d=1] - E[y | d=0]$$

□ But can easily show that this expression is equal to





Our estimate will equal true effect plus selection bias term Note: Selection bias term occurs only if CMI isn't true!

Adding additional controls [Part 1]

- Regression format also allows us to easily put in additional controls, X
 - □ Intuitively, comparison of treated and untreated just becomes E[y(1) | d = 1, X] E[y(0) | d = 0, X]
 - Same selection bias term will appear if treatment,
 d, isn't random <u>after conditioning</u> on X
 - Regression version just becomes

Why might there still be a selection bias?

$$y = \beta_0 + \beta_1 d + \Gamma X + u$$

Adding additional controls [Part 2]

- Selection bias can still be present if treatment is correlated with unobserved variables
 - As we saw earlier, it is what we can't observe (and control for) that can be a problem!

Question: If we had truly randomized experiment, are controls necessary?

Adding additional controls [Part 3]

- Answer: No, controls are not necessary in truly randomized experiment
 - But they can be helpful in making the estimates more precise by absorbing residual variation... we'll talk more about this later

Treatment effect – Example

 Suppose compare leverage of firms with and without a credit rating [or equivalently, regress leverage on indicator for rating]

Treatment is having a credit rating
Outcome of interest is leverage

Why might our estimate not equal ATE of rating? Why might controls not help us much?

Treatment effect – Example Answer

- Answer #1: Having a rating isn't random
 - Firms with rating likely would have had higher leverage anyway because they are larger, more profitable, etc.; selection bias will be positive
 - □ Selection bias is basically an omitted var.!
- Answer #2: Even adding controls might not help if firms also differ in <u>unobservable</u> ways, like investment opportunities

Heterogeneous Effects

- Allowing the effect of treatment to vary across individuals doesn't affect much
 - Just introduces additional bias term
 - Will still get ATE if treatment is random...
 broadly speaking, randomness is key

Natural Experiments – Outline

- Motivation and definition
- Understanding treatment effects
- Two types of simple differences
 - Cross-sectional difference & assumptions
 - □ Time-series difference & assumptions
 - Miscellaneous issues & advice
- Difference-in-differences

We actually just did this one!

Cross-sectional Simple Difference

- Very intuitive idea
 - Compare <u>post</u>-treatment outcome, *y*, for treated group to the untreated group
 - □ I.e., just run following regression...

In regression format...

Cross-section simple difference

$$y_{i,t} = \beta_0 + \beta_1 d_i + u_{i,t}$$

• d = 1 if observation *i* is in treatment group and equals zero otherwise

 Regression only contains <u>post</u>treatment time periods

What is needed for β_1 to capture the true (i.e., causal) treatment effect?

Identification Assumption

- Answer: E(u | d) = 0; i.e., treatment, d, is uncorrelated with the error
 - In words... after accounting for effect of treatment, the expected level of *y* in posttreatment period isn't related to whether you're in the treated or untreated group
 - *I.e.*, expected *y* of treated group <u>would have been</u> same as untreated group *absent* treatment

Another way to see the assumption...

$$E[y | d = 1] = E[y | d = 0]$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$\beta_1 + E[u | d = 1] - E[u | d = 0]$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$(\beta_0 + \beta_1 + E[u | d = 1]) - (\beta_0 + E[u | d = 0])$$

$$(\beta_0 + E[u | d = 0])$$

$$(\beta_$$

This is causal interpretation

Then, plugging in for u = y(0) - E[y(0)], which is what true error is (see earlier slides)... I.e., we must 0 β

$$B_1 + E[y(0) | d = 1] - E[y(0) | d = 0]$$
 \leftarrow assume no selection bias

Multiple time periods & SEs

- If have multiple post-treatment periods, need to be careful with standard errors
 - Errors $u_{i,t}$ and $u_{i,t+1}$ likely correlated if dependent variable exhibits serial correlation
 - E.g., we observe each firm (treated and untreated) for five years after treatment (e.g., regulatory change), and our post-treatment observations are not independent

Multiple time periods & SEs – Solution

- Should do one of two things
 - Collapse data to one post-treatment per unit; e.g., for each firm, use average of the firm's post-treatment observations
 - Or cluster standard errors at firm level
 [We will come back to clustering in later lecture]

Natural Experiments – Outline

- Motivation and definition
- Understanding treatment effects
- Two types of simple differences
 - Cross-sectional difference & assumptions
 - □ Time-series difference & assumptions
 - Miscellaneous issues & advice
- Difference-in-differences

Time-series Simple Difference

- Very intuitive idea
 - Compare pre- and post-treatment outcomes, *y*, for just the treated group [*i.e.*, *pre-treatment period acts as 'control' group*]
 I.e., run following regression...

In Regression Format

Time-series simple difference

$$y_{i,t} = \beta_0 + \beta_1 p_t + u_{i,t}$$

- $p_t = 1$ if period *t* occurs after treatment and equals zero otherwise
- Regression contains only observations that are treated by "experiment"

What is needed for β_1 to capture the true (i.e., causal) treatment effect?

Identification Assumption

- Answer: E(u|p) = 0; i.e., post-treatment indicator, p, is uncorrelated with the error
 - I.e., after accounting for effect of treatment, *p*, the expected level of *y* in post-treatment period wouldn't have been any different than expected *y* in pre-treatment period

Showing the assumption math...

This would be causal interpretation of coefficient on p E[y | p = 1] - E[y | p = 0] $(\beta_0 + \beta_1 + E[u \mid p = 1]) - (\beta_0 + E[u \mid p = 0])$ $\beta_1 + E[u \mid p = 1] - E[u \mid p = 0]$ $\beta_1 + E[y(0) | p = 1] - E[y(0) | p = 0]$ Same selection bias term... our estimated coefficient on p only matches true causal effect if this is zero

Again, be careful about SEs

- Again, if you have multiple pre- and posttreatment periods, you need to be careful with estimating your standard errors
 - Either cluster SEs at level of each unit
 Or collapse data down to one pre- and one posttreatment observation for each cross-section

Using a First-Difference (FD) Approach

 Could also run regression using firstdifferences specification

$$y_{i,t} - y_{i,t-1} = \beta_1 (p_t - p_{t-1}) + (u_{i,t} - u_{i,t-1})$$

- If just one pre- and one post-treatment period (i.e., *t*-1 and *t*), then will get identical results
- But, if more than one pre- and post-treatment period, the results will differ...

FD versus Standard Approach [Part 1]

Why might these two models give different estimates of β₁ when there are more than one pre- and post-treatment periods?

$$y_{i,t} = \beta_0 + \beta_1 p_t + u_{i,t}$$

versus

$$y_{i,t} - y_{i,t-1} = \beta_1 (p_t - p_{t-1}) + (u_{i,t} - u_{i,t-1})$$

FD versus Standard Approach [Part 2]

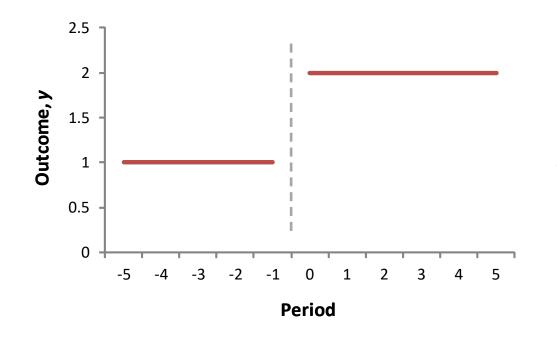
Answer:

How might this matter in practice?

- □ In 1st regression, β_1 captures difference between avg. *y* pre-treatment *versus* avg. *y* post-treatment
- In 2nd regression, β₁ captures difference in Δy immediately after treatment versus Δy in all other pre- and post-treatment periods
 - I.e., the Δp variable equals 1 only in immediate posttreatment period, and 0 for all other periods

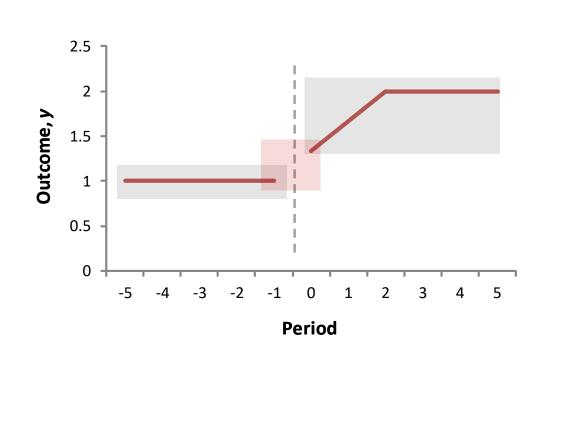
FD versus Standard Approach [Part 3]

 Both approaches assume the effect of treatment is immediate and persistent, e.g.



In this scenario, both approaches give same estimate FD versus Standard Approach [Part 4]

But suppose the following is true...



In this scenario, FD approach gives much smaller estimate

1st approach compares avg. pre- versus post

FD compares Δy from t=0 to t=-1 against Δy elsewhere (which isn't always zero!)

Correct way to do difference

Correct way to get a 'differencing' approach to match up with the more standard simple diff specification in multi-period setting is to instead use

$$\overline{y}_{i,post} - \overline{y}_{i,pre} = \beta_1 + \left(\overline{u}_{i,post} - \overline{u}_{i,pre}\right)$$

□ This is exactly the same as simple difference

Natural Experiments – Outline

- Motivation and definition
- Understanding treatment effects
- Two types of simple differences
 - Cross-sectional difference & assumptions
 - Time-series difference & assumptions
 - Miscellaneous issues & advice
- Difference-in-differences

Treatment effect isn't always immediate

- In prior example, the specification is wrong because the treatment effect only slowly shows up over time
 - □ Why might such a scenario be plausible?
 - Answer = Many reasons. E.g., firms might only slowly respond to change in regulation, or CEO might only slowly change policy in response to compensation shock

Accounting for a delay...

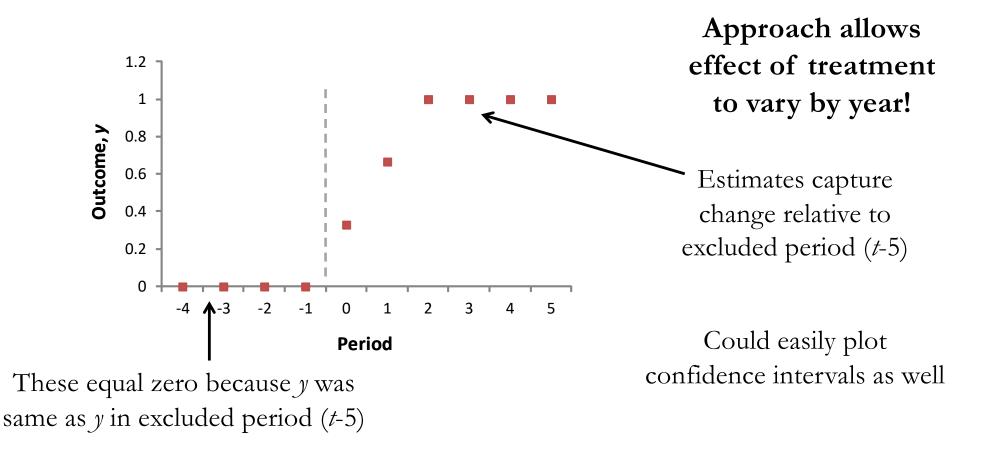
- Simple-difference misses this subtlety; it assumes effect was immediate
- For this reason, it is always helpful to run regression that allows effect to vary by period
 - How can you do this?
 - Answer = Insert indicators for each year relative to the treatment year [see next slide]

Non-parametric approach

- If have 5 pre- and 5 post-treatment obs.; could estimate : $y_{i,t} = \beta_0 + \sum_{t=-4}^{5} \beta_t p_t + u_{i,t}$
 - □ p_t is now an indicator that equals 1 if year = t and zero otherwise; e.g.
 - t = 0 is the period treatment occurs
 - t = -1 is period before treatment
 - β_t estimates change in *y* relative to <u>excluded</u>
 periods; you then plot these in graph

Non-parametric approach – Graph

Plot estimates to trace out effect of treatment



Simple Differences – Advice

- In general, simple differences are not that convincing in practice...
 - Cross-sectional difference requires us to assume the average *y* of treated and untreated would have been same absent treatment
 - Time-series difference requires us to assume the average *y* would have been same in postand pre-treatment periods absent treatment
- Is there a better way?

Natural Experiments – Outline

- Motivation and definition
- Understanding treatment effects
- Two types of simple differences
- Difference-in-differences
 - Intuition & implementation
 - "Parallel trends" assumption

Difference-in-differences

- Yes, we can do better!
- We can do a difference-in-differences that combines the two simple differences
 - Intuition = compare <u>change</u> in y pre- versus post-treatment for treated group [1st difference] to <u>change</u> in y pre- versus post-treatment for untreated group [2nd difference]

Implementing diff-in-diff

Difference-in-differences estimator

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (d_i \times p_t) + u_{i,t}$$

- $p_t = 1$ if period *t* occurs after treatment and equals zero otherwise
- $d_i = 1$ if unit is in treated group and equals zero otherwise

What do β_1 , β_2 , and β_3 capture?

Interpreting the estimates [Part 1]

- Here is how to interpret everything...
 - β₁ captures the average change in *y* from the pre- to post-treatment periods that is <u>common</u> to both treated and untreated groups
 - β₂ captures the average difference in level of *y* of the treated group that is <u>common</u> to both pre- and post-treatment periods

Interpreting the estimates [Part 2]

- □ β_3 captures the average <u>differential</u> change in *y* from the pre- to post-treatment period for the treatment group *relative* to the change in *y* for the untreated group
- β_3 is what we call the diff-in-diffs estimate

When does β_3 capture the causal effect of the treatment?

Natural Experiments – Outline

- Motivation and definition
- Understanding treatment effects
- Two types of simple differences
- Difference-in-differences
 - □ Intuition & implementation
 - "Parallel trends" assumption

"Parallel trends" assumption

- Identification assumption is what we call the parallel trends assumption
 - Absent treatment, the <u>change</u> in y for treated would not have been different than the <u>change</u> in y for the untreated observations
 - To see why this is the underlying identification assumption, it is helpful to re-express the diff-in-diffs...

Differences estimation

Equivalent way to do difference-in-differences is to instead estimate the following:

$$\overline{y}_{i,post} - \overline{y}_{i,pre} = \beta_0 + \beta_1 d_i + \left(\overline{u}_{i,post} - \overline{u}_{i,pre}\right)$$

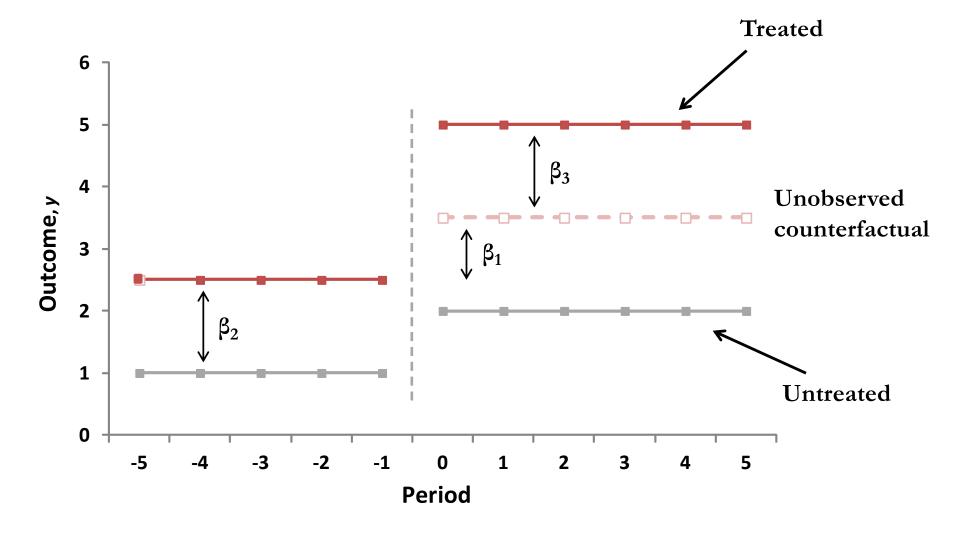
- \square β_1 gives the difference-in-differences estimate
 - In practice, don't do this because an adjustment to standard errors is necessary to get right *t*-stat
 - And remember! This is not the same as taking firstdifferences; FD can give misleading results

Difference-in-differences – Visually

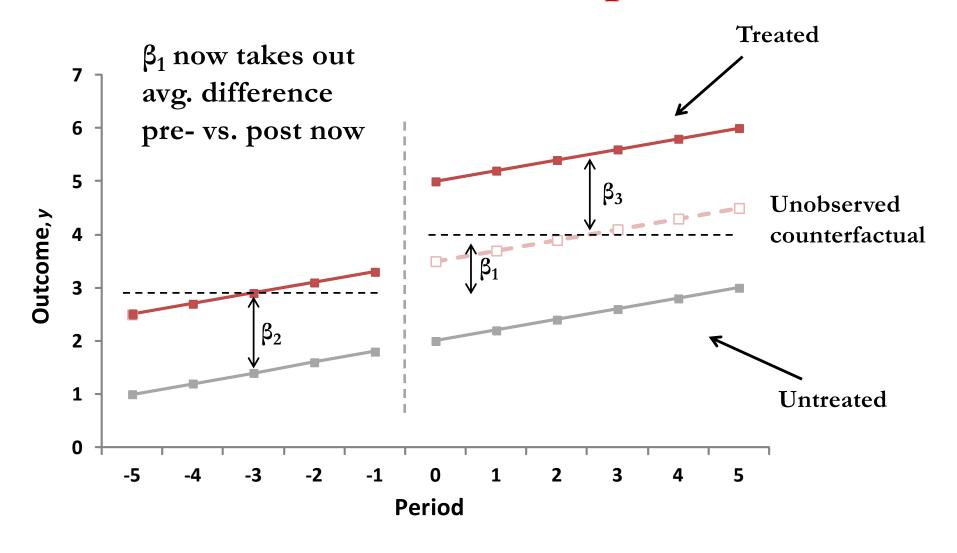
 Looking at what difference-in-differences estimate is doing in graphs will also help you see why the parallel trends assumption is key

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (d_i \times p_t) + u_{i,t}$$

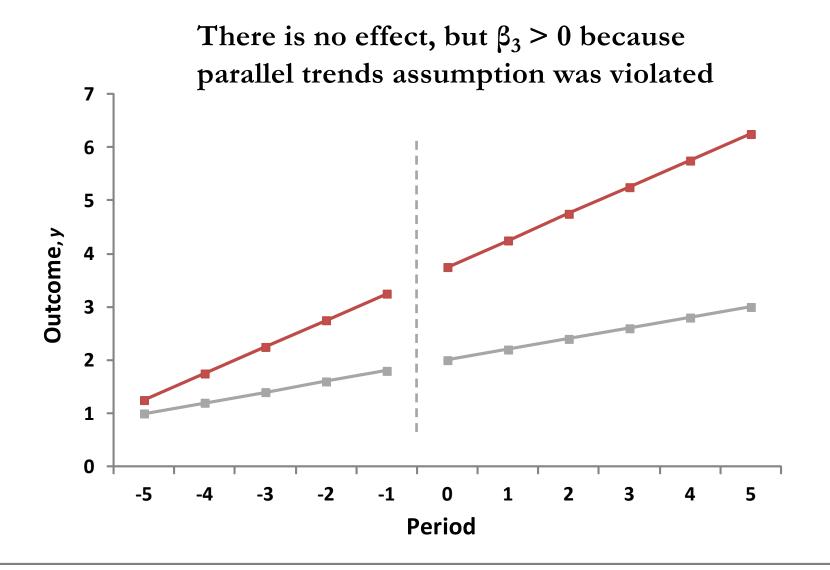
Diff-in-diffs – Visual Example #1



Diff-in-diff – Visual Example #2



Violation of parallel trends – Visual



Why we like diff-in-diff [Part 1]

- With simple difference, any of the below arguments would prevent causal inference
 - <u>Cross-sectional diff</u> "Treatment and untreated avg. *y* could be different for reasons a, b, and c, that just happen to be correlated with whether you are treated or not"
 - Time-series diff "Treatment group's avg. y could change post- treatment for reasons a, b, and c, that just happen to be correlated with the timing of treatment"

Why we like diff-in-diff [Part 2]

- But now the required argument to suggest the estimate isn't causal is...
 - "The <u>change</u> in *y* for treated observations after treatment would have been different than <u>change</u> in *y* for untreated observations for reasons a, b, and c, that just happen to be correlated with **both** whether you are treated and when the treatment occurs"

This is (usually) a harder story to tell

Example...

- Bertrand & Mullainathan (JPE 2003) uses state-by-state changes in regulations that made it harder for firms to do M&A
 - They compare wages at firms pre-versus post-regulation in treated versus untreated states
 - Are the below valid concerns about their difference-in-differences...

Are these concerns for internal validity?

- The regulations were passed during a time period of rapid growth of wages nationally...
 - Answer = No. Indicator for post-treatment accounts for common growth in wages
- States that implement regulation are more likely have unions, and hence, higher wages...
 - Answer = No. Indicator for treatment accounts for this average difference in wages

Example continued...

- However, ex-ante average differences is troublesome in some regard...
 - Suggests treatment wasn't random
 - And ex-ante differences can be problematic if we think that their effect may vary with time...
 - Time-varying omitted variables <u>are</u> problematic because they can cause violation of "parallel trends"
 - E.g., states with more unions were trending differently at that time because of changes in union power

Summary of Today [Part 1]

- Natural experiment provides random variation in x that allows causal inference
 - Can be used in IV, regression discontinuity, but most often associated with "treatment" effects
- Two types of simple differences
 - Post-treatment comparison of treated & untreated
 Pre- and post-treatment comparison of treated

Summary of Today [Part 2]

- Simple differences require strong assumptions; typically, not plausible
- Difference-in-differences helps with this
 - Compares change in y pre- versus post-treatment for treated to change in y for untreated
 - Requires "parallel trends" assumption

In First Half of Next Class

- Natural experiments [Part 2]
 - How to handle multiple events
 - **Triple differences**
 - Common robustness tests that can be used to test whether internal validity is likely to hold
- Related readings... see syllabus

Assign papers for next week...

- Jayaratne and Strahan (QJE 1996)
 - □ Bank deregulation and economic growth
- Bertrand and Mullainathan (JPE 2003)
 Governance and managerial preferences
- Hayes, Lemmon, and Qiu (JFE 2012)
 Stock options and managerial incentives

Break Time

- Let's take our 10-minute break
- We'll do presentations when we get back